Cjc 1293

purchasepeptides

I am banned!
CJC-1293 Modified GRF (1-29) In the healthy human body, large amounts of growth hormone are stored in the pituitary. The cells within the pituitary release growth hormone in response to signaling by GHRH (Growth Hormone Releasing Hormone), Ghrelin (of which GHRPs - Growth Hormone Releasing Peptides - are mimetics), and are inhibited from releasing these stores by Somatostatin. GHRH and Ghrelin act on different populations of somatotropes (GH releasing cells). GHRP/Ghrelin increases the number of somatotropes releasing GH but not the amount released by each cell; GHRH affects both the number of secreting cells and - more so - the amount they each secrete. [1] GHRH and Ghrelin are released in specific patterns that vary depending on event and environment: post-exercise, in response to slow wave sleep, in certain stages of life and physical development, and so on. Most people (even the diseased) continue to possess the ability to make GH in the pituitary. The problem is in the signalling of the pituitary to release it and make more. Even most people with diseases that affect growth hormone secretion retain the ability to continue to make GH in their pituitaries. The disease states and symptoms result, most typically, in altered (dysfunctional) GH release signaling and this also affects the ability of the pituitary to continue to make more GH. [2] Endogenous-type GHRH, which has a forty-four amino acid long chain (and a specific shape - thus making it a peptide as well as a hormone), has been marketed for the longest as Sermorelin in comparison to the other GHRH-type peptides. However, Sermorelin has been demonstrated to be degraded rapidly in the body and is cost-inefficient. But because most patients in need of GH therapy do retain the ability to produce and secrete their own GH, treatment with a GHRH-type analog remained hypothetically preferable to exogenous GH treatment. GH itself when administered exogenously results not only in "unnatural" release patterns, it results universally in down regulation of endogenous GH production - as do many hormones when applied exogenously.[3] Sermorelin's limitations naturally resulted in a variety of formulations of GHRH analogs for therapeutic usage. CJC-1295, discussed in another article, is a GHRH analogue with attached MPA (aka DAC), binds to albumin in the bloodstream and circulates for a week or longer. Modified GRF 1-29, which is also called D-Ala2-GHRH-(1-29), [Nle27]-hGHRH(1-29)-NH2, GHRH (1-29)NH2, or ModGRF1-29, is the bioactive portion of GHRH(1-44) with fifteen amino acids subtracted and four amino acids replaced at the weakest points in the peptide structure. Soule et al write that "D-Ala2 substitution contributes to the enhancement of biological activity by reducing metabolic clearance." [3] In a comparison study with synthetic exogenous GH for treating prepubertal GH deficiency, Lanes and Carillo concluded that "GHRH (1-29) at the dose and schedule used is generally effective in the treatment of GH deficiency." [4] Campbell et al explain both GHRH(1-44)'s shortcomings in treatment as well as advantages offered by Modified GRF (1-29) and specific structural differences: Native human GRF(1-44)-NH2(hGRF44) is subject to biological inactivation by both enzymatic and chemical routes. In plasma, hGRF44 is rapidly degraded via dipeptidylpeptidase IV (DPP-IV) cleavage between residues Ala2 and Asp3. The hGRF44 is also subject to chemical rearrangement (Asn8-->Asp8, beta-Asp8 via aminosuccinimide formation) and oxidation [Met27-->Met(O)27] in aqueous environments, greatly reducing its bioactivity. It is therefore advantageous to develop long-acting GRF analogues using specific amino acid replacements at the amino-terminus (to prevent enzymatic degradation): residue 8 (to reduce isomerization) and residue 27 (to prevent oxidation). Inclusion of Ala15 substitution (for Gly15), previously demonstrated to enhance receptor binding affinity, would be predicted to improve GRF analogue potency. Substitution of [His1,Val2]-(from the mouse GRF sequence) for [Tyr1,Ala2]-(human sequence) in [Ala15,Leu27]hGRF(1-32)-OH analogues completely inhibited (24-h incubation) DPP-IV cleavage and greatly increased plasma stability in vitro. Additional substitution of Thr8 (mouse GRF sequence), Ser8 (rat GRF sequence), or Gln8 (not naturally occurring) for Asn8 (human GRF sequence) resulted in analogues with enhanced aqueous stability in vitro (i.e., decreased rate of isomerization). These three highly stable and enzymatically resistant hGRF(1-32)-OH analogues, containing His1, Val2, Thr/Gln8, Ala15, and Leu27 replacements, were then bioassay for growth hormone (GH)-releasing activity in vitro (rat pituitary cell culture) and in vivo (SC injection into pigs). Enhanced bioactivity was observed with all three hGRF(1-32)-OH analogues. In vitro, these analogues were approximately threefold more potent than hGRF44, whereas in vivo they were eleven- to thirteen fold more potent.[5] Just as GHRH and Ghrelin work in conjunction through different means for maximal GH release within the body, exogenous GHRH such as Modified GRF (1-29) results in a synergistic effect when used with a Ghrelin mimetic, such as the hexapeptide known as GHRP-6. [6] Pandya et al also conclude that "GHRH is necessary for most of the GH response to GHRP-6 in humans." [6] Massoud et al conclude that "Hexarelin and GHRH-(1-29)-NH2 are synergistic" [7] (Ed note: Hexarelin is another Ghrelin mimetic). Sawada writes that "findings suggest that the KP-102-induced GH secretion largely depends on GRF and the secretagogue potentiates the GRF effect by antagonizing the SS action at the level of somatotropes. It is concluded that KP-102 alone or in combination with GRF provides a means of stimulating GH secretion in the face of elevated inhibitory tone mediated by SS." [8] (Ed note: KP-102 is the Ghrelin mimetic GHRP-2) An abstract of a review by Hamilton touches on the main advantage of GRF(1-29) over, for example, CJC-1295 or synthetic GH: ...growth hormone secretion occurs in a rhythmic pattern regulated by intricate interactions between two neurohormones: growth hormone-releasing hormone (GHRH) and somatotropin release-inhibiting factor (SRIF).[...] research also indicates that there are sexual differences in the pattern of growth hormone release and that growth hormone regulates its own secretion by means of a negative feedback system. [9] By mimicking natural release patterns with properly dosed and timed GHRPs (Ghrelin mimetics) and GHRH-analogues, negative feedback and undesirable side effects that are typically seen in synthetic GH therapy or even with past forms of GHRH administration (such as constant low-dose administration via pump) can be avoided. THIS PRODUCT IS NOT FOR HUMAN USE NOR IS IT INTENDED TO TREAT PREVENT OR CURE ANY DISEASES. MASS PRODUCTION WILL DENY ANY ORDER IF WE FEEL IT WILL NOT BE USED TO THE CONDITIONS SPECIFIED IN OUR DISCLAIMER WHICH IS AGREED UPON BEFORE ENTERING THE STORE
 
Back
Top